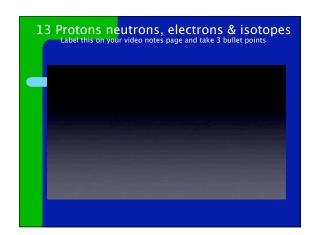


Neutron Madness • Not all atoms are perfect. • Let's say an atom is missing a neutron or has an extra neutron. • That type of atom is called an isotope. • It's still the same atom, it's just a little different from every other atom of the same element.



Learning about isotopes

- OK, this is where it gets confusing.
- What happens to the mass of an atom if it has an extra <u>neutron</u>?
 - It gets heavier.
- Remember, <u>neutron</u> each have a mass of 1 amu, so if you add an extra... it raises the atomic mass by 1.

Messing with Mass

- If you've looked at another periodic table, you may have noticed that the atomic mass of an element is rarely an even number.
- That happens because of the isotopes.
- Atomic masses are calculated by figuring out how many atoms of each type are out there in the universe.
- For carbon, there are a lot of C-12, some C-13, and a few C-14 atoms.

Messing with Mass

- When you average out all of the masses, you get a number that is a little bit higher than 12 (the weight of a C-12 atom).
- The mass for element is actually 12.011.
- Since you never really know which C atom you are using in calculations, you should use the mass of an average C atom.

Mass Number vs. Atomic Mass

- So basically, I've been misleading you over the past few days.
- Atomic mass is actually a <u>weighted average</u> of the the isotopes' mass (protons + neutrons)
- Mass Number is protons + neutrons.
- Read the fine print on our periodic table...
- (be sure you know this on the final)

Returning to Normal

- If we look at the C-14 atom one more time we can see that C-14 does not last forever.
- There is a point where it loses those extra neutrons and becomes C-12, which is stable.
- That loss of the neutrons is called <u>radioactive</u> <u>decay</u>.
- That decay happens regularly like a clock.

Returning to Normal

- For carbon, the decay happens in a couple of thousand years.
- Some elements take longer and others have a decay that happens over a period of minutes.
- The term <u>half-life</u> describes the time it takes for the amount of radioactivity to go down by one half.

Dangerous Particles

- Radioactivity occurs when an atomic nucleus breaks down into smaller particles.
- There are three types of particles: alpha, beta, and gamma.
- Alpha particles are positively charged, beta particles are negatively charged, and gamma particles have no charge.
- The particles also have increasing levels of energy, first Alpha, then Beta, and finally Gamma, which is the fastest and most energetic of all the emission particles.

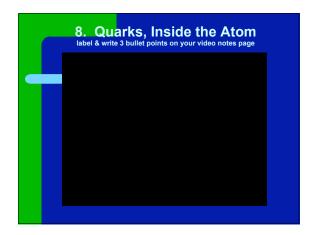
FISSION

Harness that Energy

- Nuclear energy is the energy released when the nuclei of atoms split or are fused.
- Fusion is when two nuclei come together.
- <u>Fission</u> is when one nucleus is split into two or more parts, causing a chain reaction.
- Huge amounts of energy are released when either of these reactions occurs.
- Fusion reactions create much of the energy given off by the Sun.
- Nuclear power involves uranium-235 and nuclear fission.

Why is radioactivity bad?

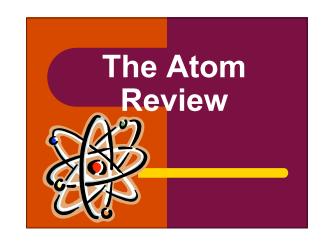
- Radiation is bad for humans because it can sometimes kill or damage cells in our bodies.
- Being exposed to most radioactive isotopes will make you very sick and probably kill you.
- UV waves are a type of radiation, which is why it is bad for your skin to lay out in the sun without sunscreen.

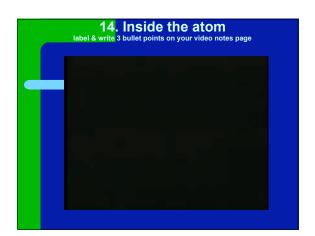

Why is radioactivity bad?

- X-Rays and other instruments used my doctors may also damage parts of our body, but the benefits typically outweigh the risks.
- In some cases, radiation is good.
- Cancer patients use chemotherapy radiation treatments to target and kill the deadly cancer cells.

Really Complex Stuff

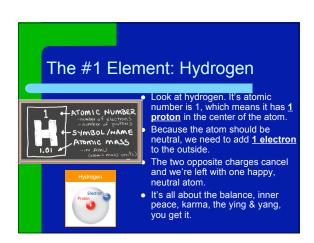
- Protons & neutrons are made of smaller bits called <u>quarks</u>.
- There are 6 quarks, but physicists usually talk about them in terms of three pairs.
- A quark has a fractional electric charge, unlike the proton and electron

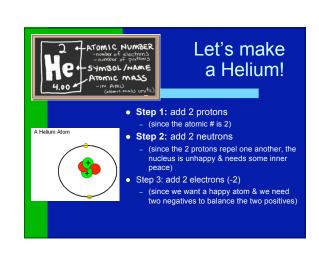


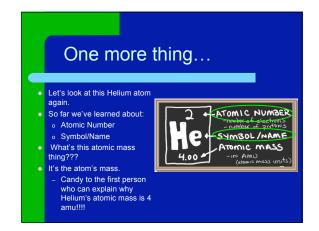


- Scientists have proved that it is real, it's not just in movies.
- While a regular atom has positive and neutral pieces (protons/neutrons) in the nucleus and negative pieces in orbiting clouds (electrons), antimatter is just the opposite.
- Antimatter has a nucleus with a negative charge and little positive pieces in the orbits.
- Those positively charged pieces are called positrons.

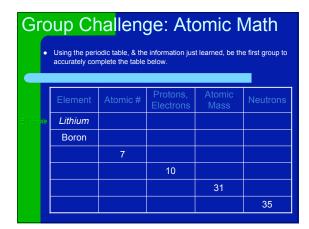
Really Complex Stuff And that's not all! Atoms are also made out of hadrons, baryons, mesons, leptons, neutrinos! The list goes on & we're discovering more about atoms every day. It's not a bad time to be a particle physicist! Want more info: http://www.particleadventure.org

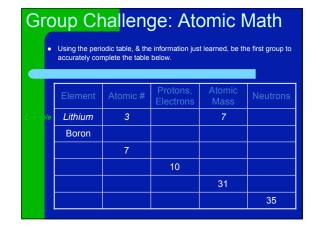


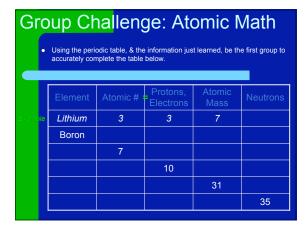



What makes one atom different from another? • Answer: the amount of protons, neutrons and electrons present in each atom. • The amount of these particles present determines the type of element.

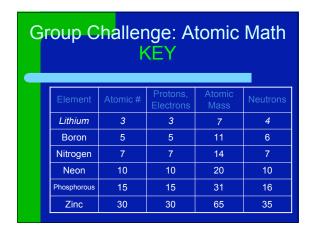
Of Elements and Atoms The number of protons in an atom is also the atomic number. AGAIN, ATOMIC # = # OF PROTONS!!! Also, since there is almost always an equal # of protons & electrons in an atom: atomic # = # of electrons


What's this periodic table thing? • Unfortunately, we haven't talked about the periodic table yet, but here's a quick intro.








Atomic Mass Think of it this way... what are the only two parts of an atom that have any mass at all? Protons & Neutrons! Electrons are so teeny they don't weigh anything. So, to find the mass of the atom, add the two together. Atomic Mass is the number of protons + neutrons.

